Heterogeneous Reasoning with Euler/Venn Diagrams Containing Named Constants and FOL

نویسندگان

  • Nik Swoboda
  • Gerard Allwein
چکیده

The main goal of this paper is to present the basis for a heterogeneous Euler/Venn diagram and First Order Logic (FOL) reasoning system. We will begin by defining a homogeneous reasoning system for Euler/Venn diagrams including named constants and show this system to be sound and complete. Then we will propose a heterogeneous rule of inference allowing the extraction of formulas of FOL from an Euler/Venn diagram. In defining this rule we will attempt to capture the “explicit” information content of an Euler/Venn diagram in a way similar to the Observe rule in the Hyperproof [?] system. Two definitions for this heterogeneous rule will be presented, one syntactically based, which is intended to be intuitive and motivational, and a second based upon a framework employing information types to model heterogeneous reasoning previously presented [?]. Lastly we will explore the relationships between these two notions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing Euler/Venn Reasoning Systems

This paper proposes an implementation of a Euler/Venn reasoning system using directed acyclic graphs and shows that this implementation is correct with respect to a modified Shin/Hammer mathematical model of Euler/Venn Reasoning. In proving its correctness it will also be shown that the proposed implementation preserves or inherits the soundness and completeness properties of the mathematical m...

متن کامل

Conservativity for a hierarchy of Euler and Venn reasoning systems

This paper introduces a hierarchy of Euler and Venn diagrammatic reasoning systems in terms of their expressive powers in topological-relation-based formalization. At the bottom of the hierarchy is the Euler diagrammatic system introduced in Mineshima-Okada-Sato-Takemura [13, 12], which is expressive enough to characterize syllogistic reasoning in terms of unification and deletion rules. At the...

متن کامل

Reasoning with Spider Diagrams

Spider diagrams combine and extend Venn diagrams and Euler circles to express constraints on sets and their relationships with other sets. These diagrams can usefully be used in conjunction with object-oriented modelling notations such as the Unified Modelling Language. This paper summarises the main syntax and semantics of spider diagrams and introduces four inference rules for reasoning with ...

متن کامل

Visualizations with Venn and Euler Diagrams

Venn and Euler diagrams intuitively visualize relationships and relative cardinalities of data sets. They are used extensively in areas as biosciences, business and criminology to facilitate data reasoning and analysis. However, current automatic drawing techniques do not always produce desirable diagrams. My research aims to develop novel algorithms to automatically draw readable diagrams that...

متن کامل

Visualizing set relations and cardinalities using Venn and Euler diagrams

In medicine, genetics, criminology and various other areas, Venn and Euler diagrams are used to visualize data set relations and their cardinalities. The data sets are represented by closed curves and the data set relationships are depicted by the overlaps between these curves. Both the sets and their intersections are easily visible as the closed curves are preattentively processed and form co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2005